Jab.

X63-11430

NASA TT F-8340

Code-2d

Wellable to U.S. Government Agencies and Los dovernment Contractors only

PERIODIC SOLUTIONS OF LINEAR SYSTEMS WITH A LAG

by A. Halanay

(ACCESSION NUMBER)

(PAGES)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON February 1963

J. S. Government Contractors Only, 15 Costs.

[From: Revue de Math. Pures et Appl. (Rumania) Vol. 6, No. 1, 1961, pp 141-158]

PERIODIC SOLUTIONS OF LINEAR SYSTEMS WITH A LAG

by A. Halanay

The necessary and adequate conditions for the existence of periodic solutions to linear inhomogeneous systems with a lag are established in this work. In view of the fact that the particular case of differential equation systems with a lagging argument is a matter of special interest, we will begin by outlining such a case.

1. Under consideration is the system

$$\dot{x}(t) = A(t) x(t) + B(t) x(t - \tau) + f(t), \tag{1}$$

where A, B, f, are continuous and periodic functions of a $\omega > \tau$ period.

We will also consider the homogeneous system

$$\dot{x}(t) = A(t)x(t) + B(t)x(t-\tau)$$
 (2)

and the corresponding conjugate system

$$\dot{y}(t) = -y(t) A(t) - y(t+\tau) B(t+\tau)$$
 (3)

We will prove by direct calculation that if the system (1) has periodic solutions of the ω period, then $\int_0^{\infty} y(t) f(t) dt = 0$ for all periodic solutions of y(t), period ω , system (3).

Let x(t) be the solution of system (1), determined with $t \ge - 7$, and y(t) the solution of system (3), determined with $t \le \omega + \tau$.

With 0 \leq t \leq ω , we shall designate

$$(y, x) = y(t) x(t) + \int_0^{\tau} y(t+\eta) B(t+\eta) x(t+\eta-\tau) d\eta = y(t) x(t) +$$

$$+ \int_t^{t+\tau} y(\xi) B(\xi) x(\xi-\tau) d\xi.$$

We have $\frac{d}{dt}(y,x) = y(t)f(t)$; hence, if x(t) and y(t) are periodic functions of the ω period, we will get

$$\int_0^{\omega} y(t) f(t) dt = \int_0^{\omega} \frac{d}{dt} (y, x) dt = (y, x)_{\omega} - (y, x)_{0} = 0$$

and our assertion has been proved.

2. Let $Y(\alpha, t)$ be a matrix whose lines, being a function of α , satisfy system (3) with α < t and conditions Y(t, t) = E, $Y(\alpha, t) \equiv 0$ when $t < \alpha \le t + 7$ where E is a unit matrix. Let x(t) be the solution of system (1), determined with $t > \sigma - 7$. We have

$$\int_{\sigma}^{t} Y(\alpha, t) \dot{x}(\alpha) d\alpha = \int_{\sigma}^{t} Y(\alpha, t) \dot{A}(\alpha) x(\alpha) d\alpha + \int_{\sigma}^{t} Y(\alpha, t) B(\alpha) x(\alpha - \tau) d\alpha + \int_{\sigma}^{t} Y(\alpha, t) \dot{f}(\alpha) d\alpha.$$

Further.

$$Y(t, t) x(t) - Y(\sigma, t) x(\sigma) - \int_{\sigma}^{t} \left[\frac{\partial}{\partial \alpha} Y(\alpha, t) \right] x(\alpha) d\alpha =$$

$$= \int_{\sigma}^{t} Y(\alpha, t) A(\alpha) x(\alpha) d\alpha +$$

$$+ \int_{\sigma - \tau}^{t - \tau} Y(\beta + \tau, t) B(\beta + \tau) x(\beta) d\beta + \int_{\sigma}^{t} Y(\alpha, t) f(\alpha) d\alpha.$$

Hence we get

$$x(t) = Y(\sigma, t) x(\sigma) - \int_{t-\tau}^{t} Y(\alpha + \tau, t) B(\alpha + \tau) x(\alpha) d\alpha + \int_{\sigma-\tau}^{\sigma} Y(\alpha + \tau, t) B(\alpha + \tau) x(\alpha) d\alpha + \int_{\sigma}^{t} Y(\alpha, t) f(\alpha) d\alpha.$$

But when $t-\tau < \alpha < t$ we have $t < \alpha + \tau < t + \tau$, consequently $Y(\alpha + \tau, t) \equiv 0$. Finally

$$x(t) = Y(\sigma, t) x(\sigma) + \int_{\sigma - \tau}^{\sigma} Y(\alpha + \tau, t) B(\alpha + \tau) x(\alpha) d\alpha +$$

$$+ \int_{\sigma}^{t} Y(\alpha, t) f(\alpha) d\alpha.$$
(4)

With $f \equiv 0$, this formula produces a general solution of system (2). Let us examine matrix $X(t, \delta)$ whose columns are solutions of system (2), which are equal to zero when $\sigma - \tau \leqslant t \leqslant \sigma$, and such that $X(\delta, \delta) = E$. It follows from formula (4) that $X(t, \delta) = Y(\delta, t)$.

We will now establish a corresponding formula for system (3). Let y(t) -- the solution of system (3), defined with $t \leqslant \sigma + \tau$, $X(\alpha, t)$, -- be the above-constructed matrix $(\alpha \gg t - \tau)$.

We have

$$\int_{t}^{\sigma} \dot{y}(s) X(s,t) ds = -\int_{t}^{\sigma} y(s) A(s) X(s,t) ds - \int_{t}^{\sigma} y(s+\tau) B(s+\tau) X(s,t) ds.$$

Hence

$$y(\sigma)X(\sigma,t) - y(t)X(t,t) - \int_{t}^{\sigma} y(s) \frac{\partial}{\partial s} X(s,t) ds =$$

$$= -\int_{t}^{\sigma} y(s) A(s) X(s,t) ds - \int_{t+\tau}^{\sigma+\tau} y(\beta) B(\beta) X(\beta-\tau,t) d\beta.$$

Further,

$$y(t) = y(\sigma) X(\sigma, t) - \int_{t}^{\sigma} y(s) A(s) X(s, t) ds - \int_{t}^{\sigma} y(s) B(s) X(s - \tau, t) ds + \int_{t}^{\sigma} y(s) A(s) X(s, t) ds + \int_{t+\tau}^{t} y(s) B(s) X(s - \tau, t) ds + \int_{t}^{\sigma} y(s) B(s) X(s - \tau, t) ds + \int_{t}^{\sigma} y(s) B(s) X(s - \tau, t) ds + \int_{t}^{\sigma} y(s) B(s) X(s - \tau, t) ds.$$

Since with $t\leqslant s< t+ au$ we have $t- au\leqslant s- au< t$, then $X(s- au,t)\equiv 0$, and consequently,

$$y(t) = y(\sigma)X(\sigma,t) + \int_{\sigma}^{\sigma+\tau} y(s) \hat{B}(s)X(s-\tau,t) ds$$

or

$$y(t) = y(\sigma) Y(t, \sigma) + \int_{\sigma}^{\sigma+\tau} y(s) B(s) Y(t, s-\tau) ds.$$
 (5)

3. Let $x(t, \varphi)$ be the solution of system (1), defined with $t \geqslant -\tau$ which at $[-\tau, 0]$ coincides with the preset continuous function φ . It follows from the fact that A, B, f are periodic functions of the ω period, that $x(t+\omega,\varphi)$ is also a solution of the system determined with $t+\omega \geqslant -\tau$, and, consequently, with $t \geqslant -\omega -\tau$. If, when $\tau \leqslant t \leqslant 0$, that solution coincides with φ , then $x(t+\omega,\varphi) \equiv x(t,\varphi)$ on the basis of the uniqueness theorem. Therefore, the condition required to make the solution periodic looks like the following $x(\omega+s,\varphi) = \varphi(s)$ with $x(t+\omega,\varphi) = \varphi(s)$ be the solution of system (2) which at $x(t+\omega,\varphi) = \varphi(s)$ with $x(t+\omega,\varphi) = \varphi(s)$ is the initial function of system (2) which at $x(t+\omega,\varphi) = \varphi(s)$ be the solution of system (2) which at $x(t+\omega,\varphi) = \varphi(s)$ be the formula

(4) that

$$x(t, \varphi) = z(t; \varphi) + \int_{\sigma}^{t} Y(\alpha, t) f(\alpha) d\alpha.$$

If U is the operator defined by formula $U\varphi=z\left(\omega+s;\varphi\right)$, then

$$V\varphi = U\varphi + \int_0^{\omega + s} Y(\alpha, \omega + s) f(\alpha) d\alpha.$$

The condition $V_{\varphi} = \varphi$ appears as

$$\varphi = U\varphi + \int_0^{\omega + s} Y(\alpha, \omega + s) f(\alpha) d\alpha$$

or as

$$(I-U) \varphi = \int_0^{\omega+\epsilon} Y(\alpha, \omega+s) f(\alpha) d\alpha,$$

where I is an identical operator.

It can easily be verified that if $\omega > 7$, then the operator U is fully continuous, if the space of functions φ is a Banach [Russian term: banak-hovoye] space of continuous vector-functions preset at [-7, 0] with the norm $\|\varphi\| = \sup_{-7, 0, 0} |\varphi(s)|$. Actually, this is what we get from (4)

$$U\varphi = Y(0, \omega + s) \varphi(0) + \int_{-\tau}^{0} Y(\alpha + \tau, \omega + s) B(\alpha + \tau) \varphi(\alpha) d\alpha$$
 (6)

and it is apparent that if $\|\varphi\| < M$, then $\|U_{\varphi}\| < L(M)$, and it follows from $\dot{z}(\omega + s; \varphi) = A(s)z(\omega + s; \varphi) + B(s)z(\omega + s - \tau; \varphi)$ that the derivatives of the functions $U\varphi$ are uniformly limited; consequently, if $\{\varphi\}$ is a limited set, $\{U\varphi\}$ is a compact set; in this case, essential use was made of the fact that $\omega > \tau$.

Thus system (1) has a periodic solution, with all f, only if I — U has an inverse operator; as U is a fully continuous operator I, U has an inverse operator only if the equation $U\phi = \phi$ has a null solution. But the solutions of this equation are the initial functions for the periodic solutions of system (2); consequently, system (1) has a periodic solution of period ω , with all f, only if system (2) has no other periodic solution

of period ω , except a trivial solution. If system (2) has a periodic solution of period ω , then $U\varphi=\varphi$ can have no null solutions. It follows from the general theory of fully continuous operators that this equation has only a finite number of independent periodic solutions of period ω .

A similar reasoning may be applied also to system (3). Let $y(t;\psi)$ be the solution of system (3), defined with $t \leq \omega + \tau$, which coincides with ψ at $[\omega, \omega + \tau]$. Together with $y(t;\psi)$, $y(t-\omega;\psi)$ is also a solution. If $y(t-\omega;\psi)$ coincides with ψ at $[\omega, \omega + \tau]$, then $y(t-\omega;\psi) \equiv y(t;\psi)$. Consequently, ψ will be the initial function for the periodic solution of system (3) only if $y(t-\omega;\psi) = \psi(t)$, with $t \in [\omega, \omega + \tau]$. According to formula (5), this condition looks like the following

$$\psi(t) = \psi(\omega) Y(t - \omega, \omega) + \int_{\omega}^{\omega + \tau} \psi(\xi) B(\xi) Y(t - \omega, \xi - \tau) d\xi. \tag{7}$$

We will designate $\tilde{\varphi}(s) = \psi(s + \omega + \tau), -\tau \leqslant s \leqslant 0$. Then, if ψ is the solution of equation (7), $\tilde{\varphi}$ is the solution of the following equation

$$\widetilde{\varphi}(s) = \widetilde{\varphi}(-\tau) Y(s+\tau, \omega) + \int_{\omega}^{\omega+\tau} \widetilde{\varphi}(\xi-\omega-\tau) B(\xi) Y(s+\tau, \xi-\tau) d\xi$$

or

$$\widetilde{\varphi}(s) = \widetilde{\varphi}(-\tau) Y(s+\tau, \omega) + \int_{-\tau}^{\sigma} \widetilde{\varphi}(\eta) B(\eta+\tau) Y(s+\tau, \eta+\omega) d\eta.$$
 (8)

4. We will show that if the equation $\varphi - U\varphi = 0$, where U is given with formula (6), and equation (8) have the same number of linearly independent solutions, and that the equation $\varphi - U\varphi = F(s)$ has a solution only if

$$\widetilde{\varphi}(-\tau)F(0) + \int_{-\tau}^{0} \widetilde{\varphi}(\eta)B(\eta+\tau)F(\eta)d\eta = 0$$

applies to all solutions $\widetilde{\varphi}(s)$ of equation (8).

Let us examine the following equation

$$\varphi(s) - K_1(s, -\tau) \varphi(0) - \int_{-\tau}^0 K_1(s, \eta) B(\eta + \tau) \varphi(\eta) d\eta = \chi(s).$$
 (9)

If $|K_1|$ is small enough, this equation will have the following solution $\varphi(s) = \sum_{i=0}^{\infty} \varphi_i(s)$, where $\varphi_i(s)$ is recurrently defined as

$$\varphi_{0}(s) = \chi(s), \ \varphi_{i}(s) = K_{1}(s, -\tau) \ \varphi_{i-1}(0) + \int_{-\tau}^{0} K_{1}(s, \eta) B(\eta + \tau) \ \varphi_{i-1}(\eta) d\eta.$$

We get

$$\varphi_{i}(s) = K_{i}(s, -\tau) \chi(0) + \int_{-\tau}^{0} K_{i}(s, \eta) B(\eta + \tau) \chi(\eta) d\eta,$$

where

$$K_{l}(s, \eta) = K_{1}(s, -\tau) K_{l-1}(0, \eta) + \int_{-\tau}^{0} K_{1}(s, \zeta) B(\zeta + \tau) K_{l-1}(\zeta, \eta) d\zeta.$$

By designating $\Gamma(s, \eta) = \sum_{i=1}^{\infty} K_i(s, \eta)$, the solution of equation (9) will look like the following

$$\varphi(s) = \chi(s) + \Gamma(s, -\tau)\chi(0) + \int_{-\tau}^{0} \Gamma(s, \eta) B(\eta + \tau)\chi(\eta) d\eta.$$
 (10)

We will now examine equation

$$\widetilde{\varphi}(s) - \widetilde{\varphi}(-\tau) K_1(0,s) - \int_{-\tau}^0 \widetilde{\varphi}(\eta) B(\eta + \tau) K_1(\eta,s) d\eta = \widetilde{\chi}(s).$$
 (11)

If $|K_1|$ is small enough, this equation will have the following solution $\widetilde{\varphi}(s) = \sum_{i=1}^{\infty} \widetilde{\varphi}_i(s)$, where

$$\widetilde{\varphi}_{0}(s) = \widetilde{\chi}(s), \ \widetilde{\varphi}_{i}(s) = \widetilde{\varphi}_{i-1}(-\tau) K_{1}(0,s) + \int_{-\tau}^{\sigma} \widetilde{\varphi}_{i-1}(\eta) B(\eta + \tau) K_{1}(\eta,s) d\eta.$$

We get

$$\widetilde{\varphi}_{l}(s) = \widetilde{\chi}(-\tau)\widetilde{K}_{l}(0,s) + \int_{-\tau}^{0} \widetilde{\chi}(\eta)B(\eta+\tau)\widetilde{K}_{l}(\eta,s)d\eta,$$

where

$$\widetilde{K}_{l}(\eta, s) = \widetilde{K}_{l-1}(\eta, -\tau) K_{1}(0, s) + \int_{-\tau}^{0} \widetilde{K}_{l-1}(\eta, \zeta) B(\zeta + \tau) K_{1}(\zeta, s) d\zeta.$$

If $\widetilde{\Gamma}(\eta,s)=\sum_{l=1}^{\infty}\widetilde{K}_{l}(\eta,s)$, the solution of equation (11) will look like the

following

$$\widetilde{\varphi}(s) = \widetilde{\chi}(s) + \widetilde{\chi}(-\tau)\widetilde{\Gamma}(0,s) + \int_{-\tau}^{0} \widetilde{\chi}(\eta)B(\eta+\tau)\widetilde{\Gamma}(\eta,s)d\eta.$$
 (12)

It is easy to show by the induction method that $\widetilde{K}_{l}(\eta,\ s)=K_{l}(\eta,\ s)$, and

consequently
$$\widetilde{\Gamma}(\eta,s) = \Gamma(\eta,s)$$
, and (12) appears as follows
$$\widetilde{\varphi}(s) = \widetilde{\chi}(s) + \widetilde{\chi}(-\tau) \Gamma(0,s) + \int_{-\tau}^{0} \widetilde{\chi}(\eta) B(\eta+\tau) \Gamma(\eta,s) d\eta. \tag{13}$$

It follows from the fact that $Y(\eta + \tau, \omega + s)$ is continuous, when

$$-\tau \leqslant \eta \leqslant 0$$
, $-\tau \leqslant s \leqslant 0$, that

$$Y(\eta + \tau, \omega + s) = \sum_{k} a_{k}(s) b_{k}(\eta) + K_{1}(s, \eta), \tag{14}$$

where $a_k(s)$ are column vectors, $b_k(\eta)$ line vectors, a_k and b_k are linearly independent and $|K_i|$ may be as small as possible.

The equation $\varphi - U\varphi = F(x)$ will then look like this

$$\begin{split} \varphi(s) - K_{1}(s, -\tau) \, \varphi(0) - \int_{-\tau}^{a} K_{1}(s, \eta) \, B(\eta + \tau) \, \varphi(\eta) \, d\eta &= \\ &= \sum_{k} a_{k}(s) \, b_{k}(-\tau) \, \varphi(0) + \sum_{k} \int_{-\tau}^{a} a_{k}(s) \, b_{k}(\eta) \, B(\eta + \tau) \varphi(\eta) \, d\eta + F(s). \end{split}$$

We will designate

$$\varphi(s) - K_1(s, -\tau) \varphi(0) - \int_{-\tau}^{0} K_1(s, \eta) B(\eta + \tau) \varphi(\eta) d\eta = \chi(s).$$

Then, if formula (10) is used

$$\begin{split} \chi(s) &= \sum_{k} a_{k}(s) \, b_{k}(-\tau) \left[\chi(0) - \Gamma(0, -\tau) \chi(0) \right. + \\ &+ \int_{-\tau}^{0} \Gamma(0, \eta) \, B(\eta + \tau) \chi(\eta) \, d\eta \, \bigg] + \sum_{k} \int_{-\tau}^{0} a_{k}(s) \, b_{k}(\eta) \, B(\eta + \tau) \Big[\chi(\eta) + \\ &+ \Gamma(\eta, -\tau) \chi(0) + \int_{-\tau}^{0} \Gamma(\eta, \zeta) \, B(\zeta + \tau) \chi(\zeta) \, d\zeta \, \bigg] d\eta + F(s). \end{split}$$

We will designate

$$\overline{b}_{k}(\eta) = b_{k}(\eta) + b_{k}(-\tau) \Gamma(0, \eta) + \int_{-\tau}^{0} b_{k}(\zeta) B(\zeta + \tau) \Gamma(\zeta, \eta) d\zeta.$$

Then the equation will appear like this

$$\chi(s) = \sum_{k} a_{k}(s) \, \bar{b}_{k}(-\tau) \, \chi(0) + \sum_{k} a_{k}(\kappa) \int_{-\tau}^{0} b_{k}(\eta) \, B(\eta + \tau) \, \chi(\eta) \, d\eta + F(s).$$

Hence, $\chi(s)-F\left(s
ight)=\sum\limits_{k}\lambda_{k}a_{k}(s)$. For \sum_{k} we get the following system

$$\lambda_k = \sum_i \gamma_{ki} \lambda_i + f_k. \tag{15}$$

where

$$\gamma_{ki} = \overline{b}_k(-\tau) a_i(0) + \int_{-\tau}^0 b_k(\eta) B(\eta + \tau) a_i(\eta) d\eta,$$

$$f_k = \overline{b}_k(-\tau) F(0) + \int_{-\tau}^0 \overline{b}_k(\eta) B(\eta + \tau) F(\eta) d\eta.$$

System (15) has a solution only if

$$\sum f_k \, \mu_k = 0 \tag{16}$$

applies to all the solutions of the following system

$$\mu_k = \sum_i \gamma_{ik} \, \mu_i. \tag{17}$$

Condition (16) is necessary and adequate to the solution of $\varphi-U\varphi=F(s)$.

Taking (14) into account, the equation (8) will look like this

$$\begin{split} \widetilde{\varphi}(s) &- \widetilde{\varphi}(-\tau) K_1(0, \mathbf{z}) - \int_{-\tau}^0 \widetilde{\varphi}(\eta) B(\eta + \tau) K_1(\eta, s) d\eta = \\ &= \sum_k \widetilde{\varphi}(-\tau) a_k(0) b_k(s) + \sum_k \int_{-\tau}^0 \widetilde{\varphi}(\eta) B(\eta + \tau) a_k(\eta) b_k(s) d\eta. \end{split}$$

If we were to designate

$$\widetilde{\varphi}(s) - \widetilde{\varphi}(-\tau) K_1(0,s) - \int_{-\tau}^{0} \widetilde{\varphi}(\eta) B(\eta + \tau) K_1(\eta,s) d\eta = \widetilde{\chi}(s)$$

and use (13), the result would be

$$\begin{split} \widetilde{\chi}(s) &= \left[\widetilde{\chi}(-\tau) + \widetilde{\chi}(-\tau) \, \Gamma(0, -\tau) + \right. \\ &+ \int_{-\tau}^{0} \widetilde{\chi}(\eta) \, B(\eta + \tau) \, \Gamma(\eta, -\tau) \, d\eta \right] \sum_{k} a_{k}(0) \, b_{k}(s) + \sum_{k} \int_{-\tau}^{0} \left[\widetilde{\chi}(\eta) + \widetilde{\chi}(-\tau) \, \Gamma(0, \eta) + \int_{-\tau}^{0} \widetilde{\chi}(\zeta) \, B(\zeta + \tau) \, \Gamma(\zeta, \eta) \, d\zeta \right] B(\eta + \tau) a_{k}(\eta) b_{k}(s) \, d\eta. \end{split}$$

Let

$$\widetilde{a}_k(\eta) = F(\eta, -\tau) a_k(0) + a_k(\eta) + \int_{-\tau}^0 \Gamma(\eta, \zeta) B(\zeta + \tau) a_k(\zeta) d\zeta.$$

Then

$$\widetilde{\chi}(s) = \widetilde{\chi}(-\tau) \sum_{k} \widetilde{a}_{k}(0) b_{k}(s) + \sum_{k} \int_{-\tau}^{0} \widetilde{\chi}(\eta) B(\eta + \tau) \widetilde{a}_{k}(\eta) b_{k}(s) d\eta.$$

The solution of this equation will be $\tilde{X}(s) = \sum_{k} \mu_{k} b_{k}(s)$, where

$$\mu_{k} = \sum_{j} \widetilde{\gamma}_{kj} \mu_{j}, \ \widetilde{\gamma}_{k} = b_{j} (-\tau) \widetilde{a}_{k}(0) + \int_{-\tau}^{0} b_{j}(\eta) B(\eta + \tau) \widetilde{a}_{k}(\eta) d\eta.$$
 (18)

It can be verified by direct calculation that $\tilde{\gamma}_{E} = Y_{IE}$; consequently, system (18) coincides with (17). Condition (16) appears as follows

$$\sum_{k} \mu_{k} \overline{b}_{k} (-\tau) F(0) + \sum_{k} \int_{-\tau}^{0} \mu_{k} b_{k}(\eta) B(\eta + \tau) F(\eta) d\eta = 0.$$

After some simple calculations, bearing in mind that

$$\sum \mu_k b_k(s) = \widetilde{\chi}(s),$$

we get

$$\begin{split} \left[\widetilde{\chi}(-\tau) + \widetilde{\chi}(-\tau) \, \Gamma(0, -\tau) + \int_{-\tau}^{0} \widetilde{\chi}(\zeta) \, B(\zeta + \tau) \, \Gamma(\zeta, -\tau) \, d\zeta \right] F(0) + \\ + \int_{-\tau}^{0} \left[\widetilde{\chi}(\eta) + \widetilde{\chi}(-\tau) \, \Gamma(0, \eta) + \right. \\ \left. + \int_{-\tau}^{0} \widetilde{\chi}(\zeta) \, B(\zeta + \tau) \, \Gamma(\zeta, \eta) \, d\zeta \right] B(\eta + \tau) F(\eta) \, d\eta = 0, \end{split}$$

that is

$$\widetilde{\varphi}(-\tau)F(0) + \int_{-\tau}^{0} \widetilde{\varphi}(\eta)B(\eta+\tau)F(\eta)d\eta = 0.$$

5. We have $F(s) = \int_0^{\omega + s} Y(\alpha, \omega + s) f(\alpha) d\alpha$ and $\widetilde{\varphi}(s) = \psi(s + \tau + \omega)$. We then get the following succession

The following succession
$$\widehat{\varphi}(-\tau)F(0) + \int_{-\tau}^{\theta} \widehat{\varphi}(\eta)B(\eta + \tau)F(\eta) d\eta = \psi(\omega)\int_{0}^{\omega} Y(\alpha, \omega)f(\alpha)d\alpha + \int_{-\tau}^{\theta} \psi(\eta + \tau + \omega)B(\eta + \tau)\left[\int_{0}^{\omega + \eta} Y(\alpha, \omega + \eta)f(\alpha)d\alpha\right]d\eta = \\ = \psi(\omega)\int_{0}^{\omega} Y(\alpha, \omega)f(\alpha)d\alpha + \\ + \int_{0}^{\omega - \tau} \left[\int_{-\tau}^{\theta} \psi(\eta + \tau + \omega)B(\eta + \tau)Y(\alpha, \omega + \eta)d\eta\right]f(\alpha)d\alpha + \\ + \int_{\omega - \tau}^{\omega} \left[\int_{\alpha - \omega}^{\theta} \psi(\eta + \tau + \omega)B(\eta + \tau)Y(\alpha, \omega + \eta)d\eta\right]f(\alpha)d\alpha = \\ = \psi(\omega)\int_{0}^{\omega} Y(\alpha, \omega)f(\alpha)d\alpha + \\ + \int_{0}^{\omega} \left[\int_{-\tau}^{\theta} \psi(\eta + \tau + \omega)B(\eta + \tau)Y(\alpha, \omega + \eta)d\eta\right]f(\alpha)d\alpha = \\ = \int_{0}^{\omega} \left[\psi(\omega)Y(\alpha, \omega) + \int_{\omega}^{\omega + \tau} \psi(\xi)B(\xi)Y(\alpha, \xi - \tau)d\xi\right]f(\alpha)d\alpha = \\ = \int_{0}^{\omega} \left[\psi(\omega)Y(\alpha, \omega) + \int_{\omega}^{\omega + \tau} \psi(\xi)B(\xi)Y(\alpha, \xi - \tau)d\xi\right]f(\alpha)d\alpha = \\ = \int_{0}^{\omega} \left[\psi(\alpha)f(\alpha)d\alpha, \psi(\alpha)\right]f(\alpha)d\alpha$$

where $y(\alpha)$ is the solution of system (3) defined by the initial function ψ . Since $\psi(s+\tau+\omega)=\widetilde{\varphi}(s)$ and $\widetilde{\varphi}$ is the solution of equation (8), $y(\alpha)$ is the periodic solution of system (3). This produces

THEOREM 1. The necessary and adequate condition required in order that system (1) may have a periodic solution of period ω is the fulfillment of equality $\int_0^\omega y_r(\alpha)f(\alpha)d\alpha=0$. for all linearly independent periodic solutions of period ω for system (3).

[System (3) has the same number of linearly-independent periodic solutions of period ω as system (2)].

6. Let us examine a general system with a lag

$$\dot{x}(t) = \int_{-\infty}^{0} x(t+s) d_{s} \eta(t,s) + f(t), \tag{19}$$

where

- a) η (t, s) is defined with t \geqslant 0 as $-\infty < s < +\infty$, $\eta(t, s) \equiv 0$ with s \geqslant 0;
- c) $\eta_{ij}(t, s)$ are continuous with respect to t, and uniform in relation to s;
 - d) η (t, s), f(t), $T_{ij}(t)$, $V_{ij}(t)$ are periodic by t, period ω .

Eventually, the number indicated by τ will be such that $\tau \gg \tau_{ij}(t)$; then $\eta(t,s)\equiv 0$ with $s\leqslant -\tau$. Let $\Upsilon(\alpha,t)$ be a matrix satisfying the system

$$Y(\alpha, t) + \int_{-\infty}^{0} \gamma_{1}(\alpha - \gamma, \gamma) Y(\alpha - \gamma, t) d\gamma = \text{const}$$

and conditions $Y(\alpha,t)\equiv 0$, with $\alpha>t,\ Y(t,\ t)=E$. Then $Y(\alpha-\gamma,\ t)\equiv 0$ with $\gamma<\alpha-t$, and we get

$$Y(\alpha, t) + \int_{\alpha-t}^{0} \eta(\alpha - \gamma, \gamma) Y(\alpha - \gamma, t) d\gamma = \text{const}$$

or

$$Y(\alpha, t) + \int_{\alpha}^{t} \eta(\beta, \alpha - \beta) Y(\beta, t) d\beta = E.$$

It is independently verified that the solution of this equation, constructed by successive approximations, is continuous by (α, t) with a limited change by α .

Let x(t) be the solution of system (19). Then

$$\int_{\sigma}^{t} \dot{x}(\alpha) Y(\alpha, t) d\alpha = \int_{\sigma}^{\tau} \left[\int_{-\infty}^{0} x(\alpha + s) d_{s} \eta(\alpha, s) \right] Y(\alpha, t) d\alpha +$$

$$+ \int_{\sigma}^{t} f(\alpha) Y(\alpha, t) d\alpha.$$

Hence

$$x(t) Y(t, t) - x(\sigma) Y(\sigma, t) - \int_{\sigma}^{t} x(\alpha) d_{\alpha} Y(\alpha, t) =$$

$$= \int_{\sigma}^{t} \left[\int_{-\infty}^{\alpha} x(s) d_{s} \eta(\alpha, s - \alpha) \right] Y(\alpha, t) d\alpha + \int_{\sigma}^{t} f(\alpha) Y(\alpha, t) d\alpha =$$

$$= \int_{-\infty}^{\sigma} x(s) d_{s} \int_{\sigma}^{t} \eta(\alpha, s - \alpha) Y(\alpha, t) d\alpha +$$

$$+ \int_{\sigma}^{t} x(s) d_{s} \int_{s}^{t} \eta(\alpha, s - \alpha) Y(\alpha, t) d\alpha + \int_{\sigma}^{t} f(\alpha) Y(\alpha, t) d\alpha.$$

Taking into consideration the conditions for η (t,s) and Y(α , t),

we get

$$x(t) = x(\sigma) Y(\sigma, t) + \int_{\sigma - \tau}^{\sigma} x(s) d_s \int_{\sigma}^{\sigma + \tau} \eta(\alpha, s - \alpha) Y(\alpha, t) d\alpha + \int_{\sigma}^{t} f(\alpha) Y(\alpha, t) d\alpha.$$
(20)

If $X(t, \mathcal{O})$ is a matrix whose lines, given $t > \mathcal{O}$, satisfy system (18) with $f \equiv 0$ and conditions $X(\sigma, \sigma) = E, X(t, \sigma) \equiv 0$, given $t < \mathcal{O}$, then it follows from (20) that $X(t, \sigma) = Y(\sigma, t)$.

We will therefore examine the conjugate system

$$y(\alpha) + \int_{-\infty}^{0} \eta(\alpha - \gamma, \gamma) y(\alpha - \gamma) d\gamma = \text{const.}$$
 (21)

As $\eta(t,s)\equiv 0$, when s \geqslant 0 and $s\leqslant -\tau$, the system (21) looks as follows $y(\alpha)+\int_{-\tau}^{\alpha+\tau}\eta(\beta,\alpha-\beta)y(\beta)\,d\beta=\mathrm{const},$

consequently, for a fixed 6

$$y(\alpha) + \int_{\alpha}^{\sigma} \eta(\beta, \alpha - \beta) y(\beta) d\beta = y(\sigma) + \int_{\sigma}^{\sigma + \tau} \eta(\beta, \sigma - \beta) y(\beta) d\beta - \int_{\sigma}^{\alpha + \tau} \eta(\beta, \alpha - \beta) y(\beta) d\beta.$$

It may be seen from this that if the solution of y(t) is sought on the $[\sigma, \sigma + \tau]_{\tau}$ intercept, it is defined, given t $< \mathcal{O}$, by a system of integral equations of the Volterra type; this makes it possible also to formulate a theorem of the existence of uniqueness for this system. The solution to the initial function with a limited change by $[\sigma, \sigma + \tau]$ is found in the class of functions with a limited change; if the initial function is continuous, the solution is also continuous.

Let $t < \sigma, X(\alpha, \gamma)$ be a matrix whose lines satisfy both the functions of system (19) with $f \equiv 0$ and conditions $X(\alpha, \gamma) \equiv 0$ with $\alpha < \gamma_r$ $X(\gamma, \gamma) = E$. We have to solve $y(\alpha)$ of system (21).

$$\int_{t}^{\sigma} X(\alpha, t) dy(\alpha) = X(\sigma, t) y(\sigma) - X(t, t) y(t) - \int_{t}^{\sigma} \left[\frac{\partial}{\partial \alpha} X(\alpha, t) \right] y_{i}'(\alpha) d\alpha.$$

Hence

$$y(t) = X(\sigma, t) y(\sigma) + \int_{t}^{\sigma} X(\alpha, t)_{i}^{t} d_{\alpha} \left[\int_{-\infty}^{0} \eta(\alpha - \gamma, \gamma) y(\alpha - \gamma) d\gamma \right] - \int_{t}^{\sigma} \left[\int_{-\infty}^{0} X(\alpha + s, t) d_{s} \eta(\alpha, s) \right] y(\alpha) d\alpha.$$

After changing the order of integration in the last integral, we get

$$y(t) = X(\sigma, t) y(\sigma) + \int_{\sigma-\tau}^{\sigma} X(\beta, t) d\beta \int_{\sigma}^{\sigma+\tau} \eta(\alpha, \beta - \alpha) y(\alpha) d\alpha.$$
 (22)

7. (21) shows that if $y(\alpha)$ is the solution of the equation, then $y(\alpha-\omega)$ will also be a solution, as $\eta(t,s)$ is periodic by t, period ω . Let $y(\alpha,\psi)$ be a solution defined at $\alpha<\sigma$ with a definition of function ψ by $[\sigma,\sigma+\tau]$; such a solution is provided by formula (22). Function $y(\alpha-\omega,\psi)$ will also be a solution, and this solution is defined when $\alpha-\omega<\sigma$, that is when $\alpha<\omega+\sigma$. If, when $\sigma<\alpha<\sigma+\tau$, this solution coincides with ψ , then it will coincide with $y(\alpha,\psi)$ when $\alpha<\delta$,

and consequently the solution $y(\alpha,\psi)$ will be periodic of period ω . The periodicity condition of the $y(\alpha,\psi)$ solution is therefore expressed

as
$$y(\alpha - \omega, \psi) = \psi(\alpha)$$
 when $\sigma \leqslant \alpha \leqslant \sigma + \tau$. We have
$$y(\alpha - \omega, \psi) = X(\sigma, \alpha - \omega) \psi(\sigma) + + \int_{\sigma - \tau}^{\sigma} X(\beta, \alpha - \omega) d_{\beta} \int_{\sigma}^{\sigma + \tau} \eta(\gamma, \beta - \gamma) \psi(\gamma) d\gamma.$$

We should point out also that $X(\mathcal{S}, t) = Y(t, \mathcal{S})$. Then the initial functions of the periodic solution of system (21) will be the solutions of the following equation

$$\psi(\alpha) = Y(\alpha - \omega, \sigma) \psi(\sigma) + \int_{\sigma - \tau}^{\sigma} Y(\alpha - \omega, \beta) d\beta \int_{\sigma}^{\sigma + \tau} \eta(\gamma, \beta - \gamma) \psi(\gamma) d\gamma.$$

Let
$$\sigma = \omega$$
, $\widetilde{\varphi}(s) = \psi(s + \omega + \tau)$; we get
$$\widetilde{\varphi}(s) = Y(s + \tau, \omega)\widetilde{\varphi}(-\tau) + \int_{-\tau}^{s} Y(s + \tau, \beta + \omega)d_{\beta} \int_{-\tau}^{s} \tau_{i}(\gamma + \tau, \beta - \gamma - \tau)\widetilde{\varphi}(\gamma)d\gamma. \tag{23}$$

The same reasoning and the use of formula (2) show that the initial functions of the periodic solutions of system (19) are the solutions of the following equation

$$\varphi(s) - \varphi(0) Y(0, \omega + s) - \int_{-\tau}^{0} \varphi(\beta) d\beta \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) Y(\alpha + \tau, \omega + s) d\alpha = 0$$

$$= \int_{0}^{\omega + s} f(\alpha) Y(\alpha, \omega + s) d\alpha. \tag{24}$$

8. Let us examine the following equation
$$\varphi(s) - \varphi(0) K_1(-\tau, s) - \int_{-\tau}^{0} \varphi(\beta) d_{\beta} \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) K_1(\alpha, s) d\alpha = \chi(s). \tag{25}$$

If $|K_1|$ is small enough, the solution of this equation will appear as $\varphi(s) = \sum_{i=0}^n \varphi_i(s)$, where $\varphi_{\bullet}(s) = \chi(s)$,

$$\varphi_{s}(s) = \varphi_{i-1}(0)K_{1}(-\tau,s) + \int_{-\tau}^{0} \varphi_{i-1}(\beta) d\beta \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) K_{1}(\alpha, s) d\alpha.$$

Further, we have

$$\varphi_{i}(s) = \chi(0) K_{i}(-\tau, s) + \int_{-\tau}^{0} \chi(\beta) d_{\beta} \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) K_{i}(\alpha, s) d\alpha,$$

$$K_{i}(\alpha, s) = K_{i-1}(\alpha, 0) K_{1}(-\tau, s) +$$

$$+ \int_{-\tau}^{0} K_{i-1}(\alpha, \gamma) d_{\gamma} \int_{-\tau}^{0} \eta(\xi + \tau, \gamma - \xi - \tau) K_{1}(\xi, s) d\xi.$$

If $\Gamma(\alpha,s) = \sum_{i=1}^{\infty} K_{i}(\alpha,s)$, we get the following solution for equation (25)

$$\Phi(s) = \chi(s) + \chi(0) \Gamma(-\tau, s) + \int_{-\tau}^{0} \chi(\beta) d_{\beta} \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) \Gamma(\alpha, s) d\alpha.$$
 (26)

We will now examine this equation

$$\widetilde{\varphi}(s) - K_1(s, 0) \, \widetilde{\varphi}(-\tau) - \int_{-\tau}^0 K_1(s, \beta) \, d\beta \int_{-\tau}^0 \gamma(\gamma + \tau, \beta - \gamma - \tau) \, \widetilde{\varphi}(\gamma) \, d\gamma = \widetilde{\chi}(s). \tag{27}$$

If K_1 is small enough, the solution of the equation will appear as follows $\widetilde{\varphi}(s) = \sum_{k=0}^{\infty} \widetilde{\varphi}_k(s)$, where $\widetilde{\varphi}_0(s) = \widetilde{\chi}(s)$,

$$\widetilde{\varphi}_{i}(s) = K_{1}(s, 0) \ \widetilde{\varphi}_{i-1}(-\tau) + \int_{-\tau}^{0} K_{1}(s, \beta) d_{\beta} \int_{-\tau}^{0} \eta \left(\gamma + \tau, \beta - \gamma - \tau\right) \ \widetilde{\varphi}_{i-1}(\gamma) d\gamma.$$

Further, we have

$$\widetilde{\varphi}_{l}(s) = \widetilde{K}_{l}(s, 0)\widetilde{\chi}(-\tau) + \int_{-\tau}^{0} \widetilde{K}_{l}(s, \beta) d\beta \int_{-\tau}^{0} \eta(\gamma + \tau, \beta - \gamma - \tau)\widetilde{\chi}(\gamma) d\gamma,$$

where

$$\begin{split} \widetilde{K}_{l}(s, \beta) &= K_{1}(s, 0) \, \widetilde{K}_{l-1}(-\tau, \beta) + \\ &+ \int_{-\tau}^{0} K_{1}(s, \alpha) \, d_{\alpha} \int_{-\tau}^{0} \gamma_{l}(\gamma + \tau, \alpha - \gamma - \tau) \, \widetilde{K}_{l-1}(\gamma, \beta) \, d\gamma. \end{split}$$

The induction method is used to prove that $\widetilde{K_l}(s,\,\beta)=K_l(s,\,\beta)$. The solution of equation (27) thus appears as follows

$$\widetilde{\varphi}(s) = \widetilde{\chi}(s) + \Gamma(s, 0)\widetilde{\chi}(-\tau) + \int_{-\tau}^{0} \Gamma(s, \beta) d\beta \int_{-\tau}^{0} \eta(\gamma + \tau, \beta - \gamma - \tau) \widetilde{\chi}(\gamma) d\gamma.$$
(28)

9. As $Y(\alpha+\tau,\omega+s)$ is equi-continuous when $-\tau \leqslant \alpha \leqslant 0$, $\tau \leqslant s \leqslant 0$, it is possible to write down

$$Y(\alpha + \tau, \omega + s) = \sum_{k} a_{k}(\alpha) b_{k}(s) + K_{1}(\alpha, s)$$
 (29)

where $a_k(\alpha)$ are vector columns, $b_k(s)$ vector lines, a_k , b_k linearly independent and $|K_1|$ may be as small as possible. Taking (29) into consideration, the equation (24) will look like

$$\begin{split} \varphi(s) &- \varphi(0) K_1(-\tau, s) - \int_{-\tau}^0 \varphi(\beta) \, d\beta \int_{-\tau}^0 \eta(\alpha + \tau, \beta - \alpha - \tau) K_1(\alpha, s) \, d\alpha = \\ &= \varphi(0) \sum_k a_k(-\tau) b_k(s) + \\ &+ \sum_k \int_{-\tau}^0 \varphi(\beta) \, d\beta \int_{-\tau}^0 \eta(\alpha + \tau, \beta - \alpha - \tau) \, a_k(\alpha) b_k(s) \, d\alpha + F(s), \end{split}$$

where

$$F(x) = \int_{0}^{\omega} f(\alpha) Y(\alpha, \omega + \mathbf{S}) d\alpha.$$

Let

$$\varphi(s) - \varphi(0) K_1(-\tau, s) - \int_{-\tau}^0 \varphi(\beta) d\beta \int_{-\tau}^0 \eta(\alpha + \tau, \beta - \alpha - \tau) K_1(\alpha, s) d\alpha = \chi(s).$$

Taking (26) into consideration, we get the following equation for $\chi(s)$:

$$\chi(s) = \left[\chi(0) + \chi(0) \right] \Gamma(\tau, 0) +$$

$$+ \int_{-\tau}^{0} \chi(\beta) d_{\beta} \int_{\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) \Gamma(\alpha, 0) d\alpha \int_{k}^{\infty} a_{k}(-\tau) b_{k}(s) +$$

$$+ \sum_{k}^{0} \int_{-\tau}^{0} \left[\chi(\beta) + \chi(0) \Gamma(-\tau, \beta) + \int_{-\tau}^{0} \chi(\xi) d\xi \int_{-\tau}^{0} \eta(\alpha + \tau, \xi - \alpha - \tau) \Gamma(\alpha, \beta) d\alpha \right] d\beta \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha + \tau) a_{k}(\alpha) b_{k}(s) d\alpha + F(s).$$

If we designate

$$\overline{a}_{k}(\alpha) = \Gamma(\alpha, 0) a_{k}(-\tau) + a_{k}(\alpha) + \int_{-\tau}^{0} \Gamma(\alpha, \xi) d\xi \int_{-\tau}^{0} \gamma_{i}(\sigma + \tau, \xi - \sigma - \tau) a_{k}(\sigma) d\sigma,$$

then we obtain

$$\chi(s) = \chi(0) \sum_{k} \bar{a}_{k}(-\tau) b_{k}(s) + \sum_{k} \int_{-\tau}^{0} \chi(\beta) d\beta \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) \bar{a}_{k}(\alpha) b_{k}(s) d\alpha + F(s).$$

It is apparent from the foregoing that $\chi(s) - F(s) = \sum_k \lambda_k \, b_k \, (s)$, in

which $\lambda_k = \sum_i \gamma_{ki} \lambda_i + f_k$,

$$\gamma_{kl} = b_{j}(0)\overline{a}_{k}(-\tau) + \int_{-\tau}^{0} b_{j}(\beta) d\beta \int_{-\tau}^{0} \gamma_{i}(\alpha + \tau, \beta - \alpha - \tau) \overline{a}_{k}(\alpha) d\alpha, \quad (30)$$

$$f_{k} = F(0)\overline{a}_{k}(-\tau) + \int_{-\tau}^{0} F(\beta) d\beta \int_{-\tau}^{0} \gamma_{i}(\alpha + \tau, \beta - \alpha - \tau) \overline{a}_{k}(\alpha) d\alpha.$$

System (30) has a solution, only if

$$\sum_{k} \mu_k f_k = 0 \tag{31}$$

applies to all solutions of the system

$$\mu_k = \sum_i \gamma_{ik} \, \mu_i \tag{32}$$

As (30) is equivalent to the equation for $\chi(s)$, and this equation is equivalent to equation (24), we conclude that condition (31) represents the necessary and adequate condition for the existence of periodic solutions of period ω to system (19).

On the basis of (29), equation (23) is expressed as

$$\begin{split} \widetilde{\varphi}(s) &= K_1(s,0) \, \widetilde{\varphi}(-\tau) - \int_{-\tau}^0 K_1(s,\beta) \, d\beta \int_{-\tau}^0 \eta(\gamma + \tau,\beta - \gamma - \tau) \, \widetilde{\varphi}(\gamma) \, d\gamma = \\ &= \sum_k a_k(s) \, b_k(0) \, \widetilde{\varphi}(-\tau) + \sum_k \int_{-\tau}^0 a_k(s) \, b_k(\beta) \, d\beta \int_{-\tau}^0 \gamma(\gamma + \tau,\beta - \gamma - \tau) \, \widetilde{\varphi}(\gamma) \, d\gamma. \end{split}$$

Designating

$$\widehat{\varphi}(s) - K_1(s, 0) \widehat{\varphi}(-\tau) - \int_{-\tau}^{0} K_1(s, \beta) d\beta \int_{-\tau}^{0} \gamma_i(\gamma + \tau, \beta - \gamma - \tau) \widehat{\varphi}(\gamma) d\gamma = \widehat{\chi}(s)$$

and using (28), we get

$$\widetilde{\chi}(s) = \sum_{k} a_{k}(s) \, \widetilde{b_{k}}(0) \, \widetilde{\chi}(-\tau) + \sum_{k} a_{k}(s) \int_{-\tau}^{0} b_{k}(\beta) \, d\beta \int_{-\tau}^{0} \tau_{i}(\gamma + \tau, \beta - \gamma - \tau) \, \widetilde{\chi}(\gamma) \, d\gamma,$$

where

$$\overline{b_k}(\beta) = b_k(\beta) + b_k(0) \Gamma(-\tau, \beta) + \int_{-\tau}^0 b_k(\sigma) d\sigma \int_{-\tau}^0 \eta(\gamma + \tau, \sigma - \gamma - \tau) \Gamma(\gamma, \beta) d\gamma.$$

Thus

$$\widetilde{\gamma}_{kj} = \widetilde{b}_{k}(0) a_{j} (-\tau) + \int_{-\tau}^{0} b_{k}(\beta) d\beta \int_{-\tau}^{0} \gamma(\gamma + \tau, \beta - \gamma, -\tau) a_{j}(\gamma) d\gamma.$$

It is then verified by direct calculation that $\hat{Y}_{i,i} = Y_{i,k}$. Then, if

 $\mu_{k} \text{ is the solution to system } (32), \text{ we get}$ $\sum_{k} \mu_{k} f_{k} = F(0) \left[\Gamma(-\tau, 0) \tilde{\chi}(-\tau) + \tilde{\chi}(-\tau) + \frac{1}{2} (-\tau) + \frac{1}{2} ($

[Translator's note: Some of Russian copy provided for this page is not legible.]

10. It follows from the preceding calculations that the necessary and adequate condition for the existence of periodic solutions of period to system (19) may be written down as*

$$\int_{0}^{\omega} f(\alpha) Y(\alpha, \omega) d\alpha \widetilde{\varphi}(-\tau) + \int_{-\tau}^{u} \left(\int_{0}^{\omega + \beta} f(\alpha) Y(\alpha, \omega + \beta) d\alpha \right) d\beta \int_{-\tau}^{0} \eta(\alpha + \tau, \beta - \alpha - \tau) \widetilde{\varphi}(\alpha) d\alpha = 0$$

applicable to all solutions $\hat{\varphi}$ of equations (23). But $\hat{\varphi}(s) = \psi(s + \omega + \tau)$ and we get the following sequence

$$\int_{-\pi}^{\omega} f(\alpha) Y(\alpha, \omega) d\alpha \, \tilde{\varphi}(-\tau) + \int_{-\pi}^{\omega} \left(\int_{0}^{\omega+\beta} f(\alpha) Y(\alpha, \omega \cdot \beta) d\alpha \right) d_{0} \int_{-\pi}^{0} \eta(x + \tau, \beta - \alpha - \tau) \, \tilde{\varphi}(\alpha) dx - \int_{0}^{\omega} f(\alpha) Y(\alpha, \omega) \psi(\omega) d\alpha + \int_{0}^{\omega} \left(\int_{0}^{\omega+\beta} f(\alpha) Y(\alpha, \omega + \beta) d\alpha \right) d\beta \int_{\omega}^{\omega-\tau} \eta(\xi, \beta - \xi + \omega) \psi(\xi) d\xi = \int_{0}^{\omega} f(\alpha) Y(\alpha, \omega) \psi(\omega) d\alpha + \int_{-\omega}^{\omega} \left(\int_{0}^{\omega+\beta} f(\alpha) Y(\alpha, \omega + \beta) d\alpha \right) d\beta \int_{\omega}^{\omega-\tau} \eta(\xi, \beta - \xi + \omega) \psi(\xi) d\xi = \int_{0}^{\omega} f(\alpha) \left(Y(\alpha, \omega) \psi(\omega) + \int_{\alpha}^{\omega} Y(\alpha, \gamma) d\gamma \int_{\omega}^{\omega+\tau} \eta(\xi, \gamma - \xi) \psi(\xi) d\xi \right) dx = \int_{0}^{\omega} f(\alpha) y(\alpha) d\alpha,$$

where $y(\alpha)$ is the solution of system (21), defined by the initial function of ψ . Thus we get

THEOREM 2. The necessary and adequate condition required in order that system (19) may have a periodic solution of period ω is the fulfillment of the following equality

$$\int_0^{\omega} f(\alpha) y_k(\alpha) d\alpha = 0$$

for all linearly-independent periodic solution of period ω of system (21). [With f \equiv 0, system (21) and system (19) have the same number of linearly-independent periodic solution of period ω].